非平衡現象論
理学研究科宇宙地球科学専攻大学院科目, 大阪大学, 理学部, 2025
大学院科目、木曜日2限、理B307教室
CLE授業支援システム
スケジュール
4月10日
平衡近傍でのゆらぎ: Boltzmann-Einsteinの原理。孤立系、開放系での表現
4月17日
(休講)
4月24日
ゆらぎの動力学: 現象論的方程式、Onsagerの相反関係、Onsager係数の決定
5月8日
ゆらぎの動力学: Langevin方程式とFokker-Planck方程式、例:Brown運動、例:ポテンシャルのある場合、例:不均一系
5月15日
5月22日
5月29日
6月5日
Quiz
Quiz 1(4月10日出題)
マクロ量 \( \{ a_i \} \)の平衡値 \( \{ \overline{a_i} \} \)からのずれは エントロピーで支配され \[ P(\{a_i\}) = (2\pi)^{-n/2} \left[ \det \left( -\dfrac{1}{k_\mathrm{B}} \dfrac{\partial^2 S}{\partial a_i \partial a_j } \right) \right]^{1/2} \exp \left( \dfrac{1}{2 k_\mathrm{B}} \sum_{ij} \dfrac{\partial^2 S}{\partial a_i \partial a_j} (a_i - \overline{a_i}) (a_j - \overline{a_j}) \right) \] と書ける。この多次元Gauss積分を実行し、規格化定数がこれで良いことを確認せよ。
Quiz 2(4月10日出題)
マクロ量 \( \{ X_i \} \)の分布 \[ P(\{X_i\}) \propto \exp \left( -\dfrac{1}{2} \sum_{ij} \beta_{ij} X_i X_j \right) \] に対し、期待値 \( \left\langle X_i X_j \right\rangle = (\beta^{-1})_{ij} \) となることを示せ。 また \(x_i = \sum_j \beta_{ij} X_j\)と置いたとき、 \( \left\langle x_i X_j \right\rangle = \delta_{ij} \)、 \( \left\langle x_i x_j \right\rangle = \beta_{ij} \)となることを示せ。
Quiz 3(4月10日出題)
熱浴および圧力浴と接している系に対してエントロピーゆらぎの二乗の期待値および圧力ゆらぎの二乗の期待値が \[ \left \langle (\Delta S)^2 \right\rangle = k_\mathrm{B} C_p \, , \, \, \left \langle (\Delta p)^2 \right\rangle = \dfrac{k_\mathrm{B} T}{V \chi_S} \] となることを示せ。ここで\( C_p , \chi_S \)はそれぞれ等圧熱容量、断熱圧縮率である。
Quiz 4(4月24日出題)
オンサーガー係数やノイズの計算で \[ I=\int_{0}^{t} ds_{1}\int_{0}^{t} ds_{2} \, f(s_{1}-s_{2}) \] の形の積分がでてきた。 \( f \) が偶関数のとき \[ I = \int_{0}^{t} dx\, 2 (t -x ) f(x) \] とできることを示せ。
評価
期末レポート、およびQuizの解答状況(数問選んで、最後に提出)をみて総合的に判断する。 詳細はシラバスを参照してください。
参考書、参考文献
一般的なこと
- S. R. de Groot and P. Mazur “Non-equilibrium Thermodynamics”, Dover Publications
- 一柳正和「不可逆過程の物理」日本評論社
- 川崎恭治「非平衡と相転移-メソスケールの統計力学-」朝倉書店
- 早川尚男「非平衡統計力学」サイエンス社
- 北原和夫「非平衡系の統計力学」岩波書店
- 鈴木増雄「統計力学、岩波講座現代の物理学」岩波書店
- 戸田盛和、久保亮五、斎藤信彦、橋爪夏樹「統計物理学、現代物理学の基礎第二版」岩波書店
- 関本謙「ゆらぎのエネルギー論」岩波書店
- 沙川貴大「非平衡統計力学」共立出版
- 齊藤圭司「ゆらぐ系の熱力学」サイエンス社
- D. N. Zubarev “Nonequilibrium Statistical Thermodynamics”, Consultants Bureau
- R. Zwanzig “Nonequilibrium Statistical Mechanics”, Oxford
- M. Ichiyanagi, “Conceptual developments of non-equilibrium statistical mechanics in the early days of Japan”, Phys. Rep. 262 (1995) 227.
- R. Kubo, M. Toda, and N. Hashitsume, “Statistical Physics II, Nonequilibirum Statistical Mechanics” Spinger-Verlag
- J. A. McLennan, “Introduction to Non-equilibrium Statistical Mechanics” Prentice-Hall
- 佐々真一「非平衡現象論」講義ノート
Einsteinのゆらぎの理論
- L. Landau, E. Lifshitz 「統計物理学 (下)」岩波書店, L. Landau, E. Lifshitz, “Statistical Physics (course of theoretical physics volume 5) Butterworth-Heinemann”
- A. Einstein, “Theorie der Opaleszenz von homogenen Flüssigkeiten und Flüssigkeitsgemischen in der Nähe des Kritischen Zustandes”, Ann. der Phys. 33 (1910), pp. 1275-1298. 邦訳 アインシュタイン選集1、監修 湯川秀樹 翻訳 井上健、谷川安孝、中村誠太郎 共立出版(1971)
確率過程
- N. G. van Kampen, “Stochastic Processes in Physics and Chemistry”, Elsevier
ブラウン運動
- A. Einstein “Investigations on the theory of the Brownian movement”, Dover
Onsagerの相反定理、Onsager-Machlup過程
- L. Onsager, “Reciprocal Relations in Irreversible Processes I”, Phys. Rev. 37 (1931) 405.
- L. Onsager, “Reciprocal Relations in Irreversible Processes II”, Phys. Rev. 38 (1931) 2265.
- 上記二つの論文の翻訳が物性研究にある。
- 橋爪夏樹、“A Statistical Theory of Linear Dissipative Systems”, Prog. Theor. Phys. 8 (1952) 461.s
- L. Onsager and S. Machlup, “Fluctuations and Irreversible Processes”, Phys. Rev. 91, 1505, (1953).
- M. Ichiyanagi “Variational principles of irreversible processes”, Phys. Rep. 243, 125,(1994)
線形応答
- 戸田盛和、久保亮五、斎藤信彦、橋爪夏樹「統計物理学、現代物理学の基礎第二版」岩波書店
- R. Kubo, M. Toda, and N. Hashitsume, “Statistical Physics II, Nonequilibirum Statistical Mechanics” Spinger-Verlag
ゆらぎの定理、Jarzynski等式
- D. J. Evans and D. J. Searles, “The Fluctuation Theorem”</a>, Adv. Phys. 51 (2002) 1529.
- G. E. Crooks, “Entropy production fluctuation theorem and the non equilibrium work relation for free energy differences”, Phys. Rev. E 60, 2721, (1999).
- C. Jarzynski, “Nonequilibrium Equality for Free Energy Differences”, Phys. Rev. Lett. 78, 2690 (1997).
- C. Jarzynski, “Nonequilibrium work theorem for a system strongly coupled to a thermal environment”, J. Stat. Mech.: Theor. Exp. P09005, (2004).
情報と熱力学
- H. Leff and A. F. Rex ed. “Maxwell’s Demon 2 Entropy, Classical and Quantum Information, Computing”, Institute of Physics Publishing
大偏差性